分类
uncategorized

ClickHouse内幕(8)基础数据结构

性能优化是广大程序员津津乐道的话题,在软件工程中并不是所有的执行路径都需要优化,只有关键执行路径才需要花费大力气进行优化。对于数据库领域来说关键执行路径,一句话就可以概括,一个查询中对每行数据都需要执行的函数或者代码。而基础数据类型是关键执行路径上的算法的基础,所以对它们的优化对性能有重要影响。

根据实践经验有大概一半的列是字符串类型,所以字符串是一个重要基础数据类型。ClickHouse是一个列式数据库,数据处理的过程中也是列式处理,每个列的数据需要用数组表示,所以数组也是重要数据类型。

本文讨论ClickHouse的重要基础数据类型:StringRef、PodArray。本文的讨论基于ClickHouse 24.1。

一、StringRef

StringRef的工作原理类似std:string_view,它可以表示对字符串序列的引用,比如字符串str=”abcdef”,那么StringRef(str.data() + 1, 2)表示”bc”,请注意这里StringRef实际上没有对”nc”进行拷贝。

StringRef被广泛运用在ClickHouse关键执行路径中,比如:内存中对于String类型列的表示ColumnString、Aggregate和Join算子用到的关键数据结构HashMap等。所以ClickHouse对StringRef进行了深度优化。

StringRef最重要的操作是判断相等,所以判断相等的函数memequalWide是重点优化对象。如何判断两个字符串相等,ClickHouse采用了批量处理的思路,而不是逐一对比每个字符。

1. size <= 16

当字符串长度小于等于16的时候,根据字符串的长度分成以下4中情况处理。主要思路是尽量将字符串当做比较大的数据类型(整型)做比较,以节约CPU计算周期。这么做的原因是64位CPU一次计算可以对比8个字符,将其当做较大的数据类型作比较可以最大限制的减小比较的次数。

由于不是所有情况size都能被数据类型的长度整除,对比前n个字节后,在再次对比后n个字节,这里是个很巧妙的设计,因为两次对比可以完成对所有字符的比较。

2. size > 16

  1. 对于大于64字节的部分使用compare64compare64是4个compare8的组合。
  2. 对于剩余能被16整除的部分使用compare8compare8是一个向量比较函数,使用SSE2指令集,一次对比两个16个字符的字符串。
  3. 使用compare8函数对比剩余部分的的后16个字符。

3. compare8函数

通过SSE2指令集(SIMD指令)一次性对比两个16个字符的数据是否相等。

inline bool compareSSE2(const char * p1, const char * p2)
{
    return 0xFFFF == _mm_movemask_epi8(              // 4) translate _m128i to int32
	_mm_cmpeq_epi8(                              // 3) 比较两个String
	        _mm_loadu_si128(reinterpret_cast<const __m128i *>(p1)),        // 1) 将String 1加载到寄存器
	        _mm_loadu_si128(reinterpret_cast<const __m128i *>(p2))));      // 2) 将String 2加载到寄存器
}

二、PodArray

PodArray是ClickHouse的自定义vector,ClickHouse中几乎所有的数据类型的列在内存中的表示都会用到PodArray,所以ClickHouse对PodArray也是进行了大量的优化。

绝大多数细致的优化都是针对场景的,所以首先明确PodArray设计的应用场景,它主要用于存储列式的数据,ClickHouse中列式的数据在内存中会划分为小的Chunk,默认Chunk的长度是6.5w左右,总结下来PodArray主要用于存储大量的数据的类似vector的数据结构。

1. 支持Stack内存分配

因为栈的空间是有限的,传统的动态数组结构比如std::vector,数据都是分配在堆上,这样的设计具有普适性,但是对数据的访问会有一次跳转,不利于数据cacheline的命中率。针对这一点ClickHouse提供了Stack上的内存分配方案PODArrayWithStackMemory

其工作原理如下。首先PodArray继承了AllocatorWithStackMemoryAllocatorWithStackMemory是一个内存分配器,其特点是当需要分配的内存小于一定阈值的时候使用栈上的空间,当大于阈值的时候分配对上的空间,并把栈上的数据拷贝到堆上。

2. Padding

PaddedPodArray是带有Padding的PodArray,其左右都填充了一些空白的内存空间,这些内存空间被初始化为了0,其内存结构如下:

2.1 left padding

ClickHouse中有很多变长的数据类型,变长的数据类型指的是每个值的长度是不固定的,比如String。对于这种数据结构在存储的时候需要存储一个offset数组和一个数据数组,如下:

当需要获取某个元素的时候,需要计算元素的长度,计算方式如下:

    /// Size of i-th element, including terminating zero.
    size_t ALWAYS_INLINE sizeAt(ssize_t i) const 
    {
         auto end_offset = i == 0 ? 0 : offsets[i - 1];
        return offsets[i] - end_offset; 
    }

每次都需要判断i是不是为0,if语句会大大影响CPU指令的cache命中率,并且不能触发编译器的自动向量化操作,从而影响性能。

当有了left padding后,代码可以优化为:

    /// Size of i-th element, including terminating zero.
    size_t ALWAYS_INLINE sizeAt(ssize_t i) const 
    {
        return offsets[i] - offsets[i - 1]; 
    }

去掉了if,消除了对CPU指令cache命中率的影响,同时如果循环调用,可以触发编译器的自动向量化操作。

PS:CPU指令cache命中率对性能的影响可以参考:ClickHouse内幕(5)基于硬件的性能优化

PS:编译器自动向量化触发条件:requirements-for-vectorizable-loops

3. emplace_back函数

PodArray的emplace_back函数,直接在末尾的内存空间上构建要插入的对象,相对提前构建然后在拷贝的方式减小了一次内存拷贝的开销。这个优化方式跟std::vector的emplace_back函数类似。

    template <typename... Args>
    void emplace_back(Args &&... args) /// NOLINT
    {
        if (unlikely(this->c_end + sizeof(T) > this->c_end_of_storage))
            this->reserveForNextSize();

        new (t_end()) T(std::forward<Args>(args)...);   /// 在末尾构建对象,减少了数据拷贝的开销
        this->c_end += sizeof(T);
    }

在创建对象的时候使用了placement new operator,其允许在指定内存地址创建对象,关于placement new operator请参考:stackoverflow

版权声明:文章为作者辛勤劳动的成果,转载请注明作者与出处。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注