分类
Articles

ClickHouse内幕(1)数据存储与过滤机制

本文主要讲述ClickHouse中的数据存储结构,包括文件组织结构和索引结构,以及建立在其基础上的数据过滤机制,从分Part裁剪到Mark裁剪,最后到基于SIMD的行过滤机制。

数据过滤机制实质上是构建在数据存储格式之上的算法,所以在介绍过滤机制前先介绍下ClickHouse中数据存储格式。

PS:本文基于ClickHouse v24.1

最后更新于:2024-08-27

一、数据存储的目录结构

ClickHouse数据存储在目录结构上采用大数据系统常见的分区,然后分区内在进行细分文件的方式。

表中的数据首先按照分区键被划分为多个分区,分区键常采用日期的方式,比如下图中按照月份分区。每次数据批量插入形成一个最小的存储单元,ClickHouse中称为Part,Part归属于某一个分区。

ClickHouse中一个表的所有分区的所有Part放在同一个目录中,Part所属的分区可以根据Part名进行区分,Part的命名方式如下:

partition-id _ min-id _ max-id _ level

Part目录内部文件组织形式如下:

primary.idx – 是主键索引文件,记录了每个Mark对应的主键索引值,整个数据集一个.idx文件

[Column].mrk – 记录Mark(Mark在索引结构中介绍)对应的数据在数据文件(.bin文件)中的offset,用于根据Mark定为到数据位置,每个列一个.mrk文件。

[Column].bin – 真实数据文件,每个列一个.bin文件

checksums.txt – part checksum文件,用于校验数据完整性

columns.txt – 元数据,记录列名以及数据类型

count.txt – 元数据,记录该Part总行数,可以用于加速count(*)查询

partition.dat – 分区表达式

minmax_[Column].idx – 某一个列的最大最小值,可以用于加速查询,分区键固定有一个最大最小索引,用于分区裁剪

statistics_(column_name).stat – 列的统计信息,用于查询加速

二、索引结构

每个part形成一个完整的索引结构,整体上Clickhouse的存储是列式的,每个列单独存储(compact模式将多个文件合并成了一个,但本质上是一样的)。Clickhouse索引的大致思路是:首先根据索引列将整个数据集进行排序,这点类似MySQL的联合索引;其次将排序后的数据每隔8192行选取出一行,记录其索引值和序号,并形成稀疏索引,这个序号在Clickhouse中序号被称作Mark,也就是说Mark表示一组数据。

下图是一个二维表(date, city, action)的索引结构,其中(date,city)是索引列,整个part文件的宏观结构如下:

那么查询如何使用索引呢?以下查询为例:

select count(distinct action) where date=toDate(2020-01-01) and city=’bj’
  1. 查找primary.idx并找到对应的Mark集合(即数据block集合)
  2. 对于要读取的每个列根据.mrk文件定位到Mark对应在数据文件.bin中的数据offset
  3. 读取到对应的数据,供后续计算

以上为宏观步骤,下面会介绍其具体原理。

三、何时使用索引

在SQL编译阶段,初始化执行Pipeline的时候,ClickHouse会分析待查询的数据,目标是解析出需要读取哪些Part的哪些Mark列表。解析结果如下所示的AnalysisResult。在真正执行的时候,Scan算子直接读取这些Mark列表对应的数据。

    struct AnalysisResult
    {
        RangesInDataParts parts_with_ranges;	// 最终要扫描的Part列表,以及每个Part的扫描范围(range)
        Names column_names_to_read;	                     // 需要读取那些列
        
        // 以下是一些统计信息	
        UInt64 total_parts = 0;		// Parts总数
        UInt64 selected_parts = 0;		// 命中的Part数量
        UInt64 selected_ranges = 0;		// 命中的range数量
        UInt64 selected_marks = 0;		// 命中的marks总数
        UInt64 selected_rows = 0;		// 命中的marks包含的总数据行数
    };

关键堆栈:

ReadFromMergeTree::selectRangesToRead
ReadFromMergeTree::getAnalysisResult()
ReadFromMergeTree::initializePipeline
QueryPlan::buildQueryPipeline
InterpreterSelectWithUnionQuery::execute() 
executeQuery

四、KeyCondition

在介绍如何使用索引前,先介绍下其核心算法KeyCondition。KeyCondition对外提供的语义是检查一个范围矩阵是否可以满足过滤条件。首先在构建KeyCondition的时候有两个必要参数,一个是过滤条件语法树这是过滤的主体,另一个是keys表示在判断是否满足的时候只关心这些列。然后当使用KeyCondition的时候,用户需要传入一个keys范围矩阵,来判断该范围矩阵是否满足过滤条件分。

范围矩阵是keys的范围数组,比如:c1,c2,c3三个主键列构成的一个范围矩阵可以是[[a, b], [1, 1], [x, x]],当用户进行Mark裁剪的时候,会生成范围矩阵然后判断该范围矩阵是否满足条件。又比如常用的时间分区构成的一个范围矩阵可以是[[2023-11-22, 2023-11-22]],当用户进行分区裁剪的时候,遍历每个分区构建范围矩阵,然后判断该分区是否满足条件。

满足过滤条件分三种情况,1范围矩阵中的数据全部满足过滤条件,2部分满足,3全部不满足。为表示以上三个语义ClickHouse设置了一个数据结构 BoolMask {can_be_true, can_be_false},它的{true, false}、{true, true}、{false, true}三个值对应以上三种语义。

KeyCondition的核心是RPN表达式,相对于中缀或者其他的表示方式,RPN的优势是计算简单,计算的时候使用栈,在碰到操作符的时候从栈顶弹出操作数就可以完成子表达式的计算,进而完成整个表达式的计算。

通过类比能够更好的理解在过滤场景中如何使用RPN,上图展示了RPN在四则运算法则和过滤两个场景中的使用情况,两种场景中唯一的区别是结果类型不一样,一个是number,一个是BoolMask {can_be_true, can_be_false}。更多关于RPN请参考wiki

五、如何使用索引

1. Part裁剪

Part裁剪的目的是一次性过滤整个Part文件,只保留可能包含目标数据的Part。ClickHouse中的Part裁剪过程中会构建两个KeyCondition。其中一个被称为minmax_idx_condition,主要用于根据分区列的最大值和最小值进行Part过滤。minmax_idx_condition的keys为构成分区键对应的原始列,比如分区键为toDate(date_time),那么它的key为date_time列,后续进行过滤的时候传入的也是date_time对应的值组成的范围矩阵。下图展示了minmax_idx_condition的工作原理。

另一个被称为partition_pruner,主要用于过滤分区。partition_pruner的key为分区表达式组成的列,比如分区键为toDate(date_time),那么它的key为toDate(date_time),后续进行过滤的时候传入的是分区对应的值组成的范围矩阵。下图展示了partition_pruner的工作原理。

Part裁剪的主要逻辑位于:MergeTreeDataSelectExecutor::selectPartsToRead,大家可以自行参阅:

for (size_t i = 0; i < prev_parts.size(); ++i)
{
           if (!minmax_idx_condition->checkInHyperrectangle(        // 基于分区键的列的最大最小值索引,进行Part裁剪
                part->minmax_idx->hyperrectangle, minmax_columns_types).can_be_true)
            continue;

            if (partition_pruner->canBePruned(*part))	                   // 基于分区表达式,进行Part裁剪
                continue;

            parts.push_back(prev_parts[i]);
}

2. Mark裁剪

过滤完Part后会进一步进行Mark过滤,首先回顾下什么是Mark,在一个Part内部数据按照主键进行排序,然后每隔8192行数据将数据进行分组,这个分组id就被称为Mark,Mark表示一组按照主键有序的数据。

ClickHouse索引过滤的最小粒度就是Mark。下图展示了c1,c2,c3三个列组成主键的一个Part的数据结构以及Mark过滤的流程。

对于一个part文件,由1-n的连续mark区间组成,Mark裁剪就是去除不能满足查询条件的子区间。

如果查询条件代表的Mark区间是单一且连续的区间,比如:where c1='a'那么对于mark的裁剪可以通过二分法查找这个单一区间的上下界。

如果不是单一连续区间,比如:where c2='2',那么采用排除法排除,逐步分割mark区间,排除不能满足条件的子区间。

在Mark裁剪过程中输入的是一个MarkRange,比如:[2, 5],输出的是一系列的MarkRange,那么如何使用KeyCondition呢?

因为KeyCondition进行判断的时候输入的是主键列的范围矩阵,所以需要先将MarkRange转换成范围矩阵。将MarkRange转换成范围矩阵,相当于将多维空间的范围转换为一维空间的范围,所以转换出来的范围矩阵可能有多个,这里不做过多讨论,有兴趣可以参考:KeyCondition::forAnyHyperrectangle方法。

MarkRange [2, 5]转换成的范围矩阵其中一个为:[[a, a], [1, 1], [z, +inf]],下图展示了KeyCondition裁剪Mark的工作原理:

至此我们过滤出来了一系列的mark,同时数据存储结构和索引在过滤过程中的使命也完成了。接下来需要过滤每个mark中的Row。

六、Row过滤

Row过滤发生在查询执行阶段。ClickHouse中Row过滤也是按照batch的方式进行,该batch在ClickHouse内部被称为Chunk,它大小可能与Mark不同。ColumnVector::filter记录了数值类型的列过滤的主要逻辑(其它列过滤思路大同小异)。

1. 生成Filter Mask:

首先对根据过滤条件给一个Chunk的数据生成一个Filter Mask,Filter Mask是一个行数等于Chunk大小的UInt8数组,数组中只有2个值,其中0表示该行的数据不符合过滤条件,1表示符合。

2. Filter column by Filter Mask:

根据Filter Mask进行数据过滤,过滤的过程中使用到了SIMD技术进行优化,具体流程如下:

首先将数据按照64个的粒度为一组,按照组的粒度进行处理,然后将byte mask转换成bit mask,参考函数:bytes64MaskToBits64Mask,转换后的bit mask可以直接用一个UInt64表示。

对于每个分组按照数据分布的不同情况分别进行过滤

1)如果bit_mask等于0,也就是该分组的bit mask全0,直接忽略该分组

2)如果bit mask 全1,将整个分组复制到结果集中

3)[0]+[1]+或者[1]+[0]+,将byte maskt中连续1的区间复制到结果集

3. Filter column by Filter Mask version 2

过滤部分ClickHouse提供了一个SIMD的版本(使用AVX512指令集)。依然将数据按照64个的粒度为一组,按照组的粒度进行处理,然后将byte mask转换成bit mask,对于每个分组按照数据分布的不同情况分别处理

1)如果bit mask 全0,直接忽略该分组

2)bit mask 全1,将整个分组复制到结果集中,使用向量化方法批量进行复制

_mm512_storeu_si512(reinterpret_cast(&res_data[current_offset + i]), 
               _mm512_loadu_si512(reinterpret_cast(data_pos + i)));

3)其它情况,使用向量化函数_mm512_mask_compressstoreu_epi8,根据mask将数据拷贝到结果集中

4. 过滤结尾部分

5. Row过滤优化总结

1 为什么使用Filter Mask?

1)过滤多个列的时候可以复用Filter Mask;2)便于使用SIMD指令

2 为什么分组处理?

因为ClickHouse数据按照主键排序,很多情况下数据按照某些列局部有序,过滤的时候可将整个分组过滤掉或者命中的概率比较大,这样相比单个行的处理方式,在处理过程中没有判断,消除了分支预测失败的场景,避免CPU执行流水线被破坏,同时增大指令与数据缓存的命中率,这也是过滤高性能的核心设计点。

3 是不是使用位宽越大的SIMD指令集越好,比如AVX512一定快于SSE2?

大多数场景下是的,但是在过滤场景中不是的。因为增大位宽,那么分组大小也会相应增大,分组越大全零或者全一的概率越小,那么过滤整个分组的概率越小,所以需要看数据分布情况。

本作品采用 知识共享署名 4.0 国际许可协议 进行许可, 转载时请注明原文链接。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注